

ΞĦ

surveying project mar

job number -

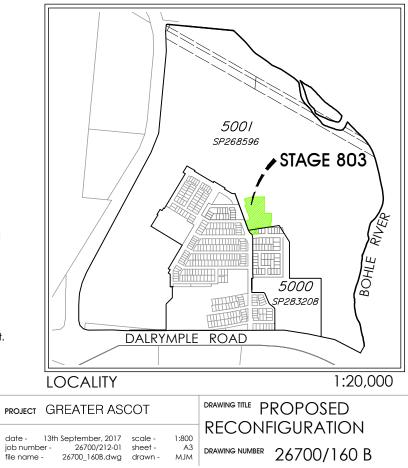
PROPOSED RECONFIGURATION

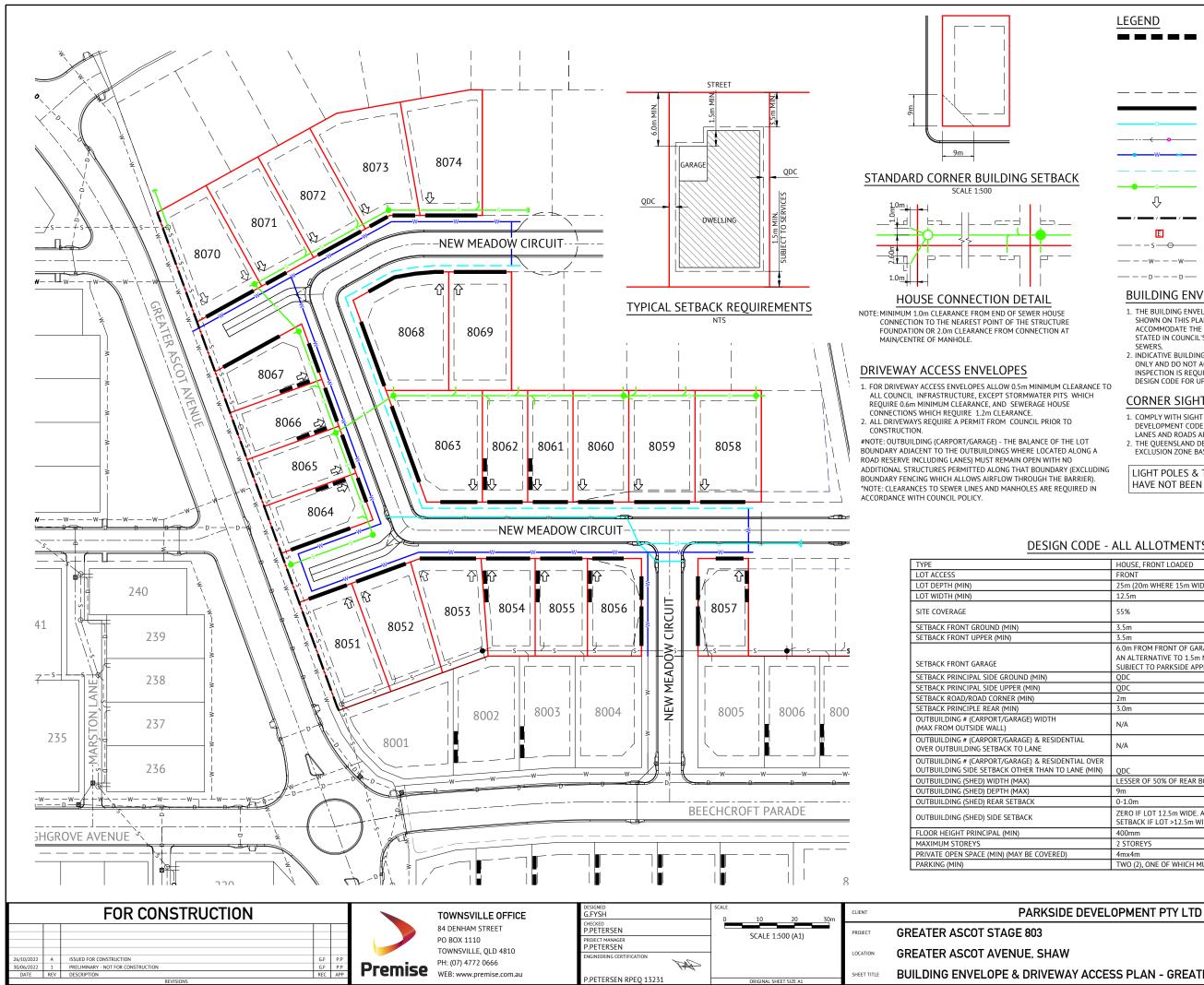
Lots 8051-8074 Cancelling Lots 5000 on SP283208 \$ Lot 5001 on SP268596

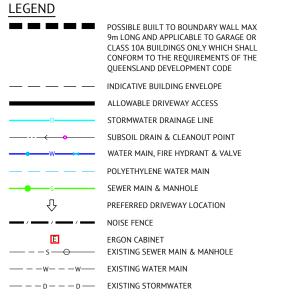
Parish of Bohle County of Elphinstone City of Townsville

STAGE 803

Total Site Area 1.78 ha


ots e Lot Area	
enath of New Road	327m


Total Length of New Road 327m


____ 1.5m path

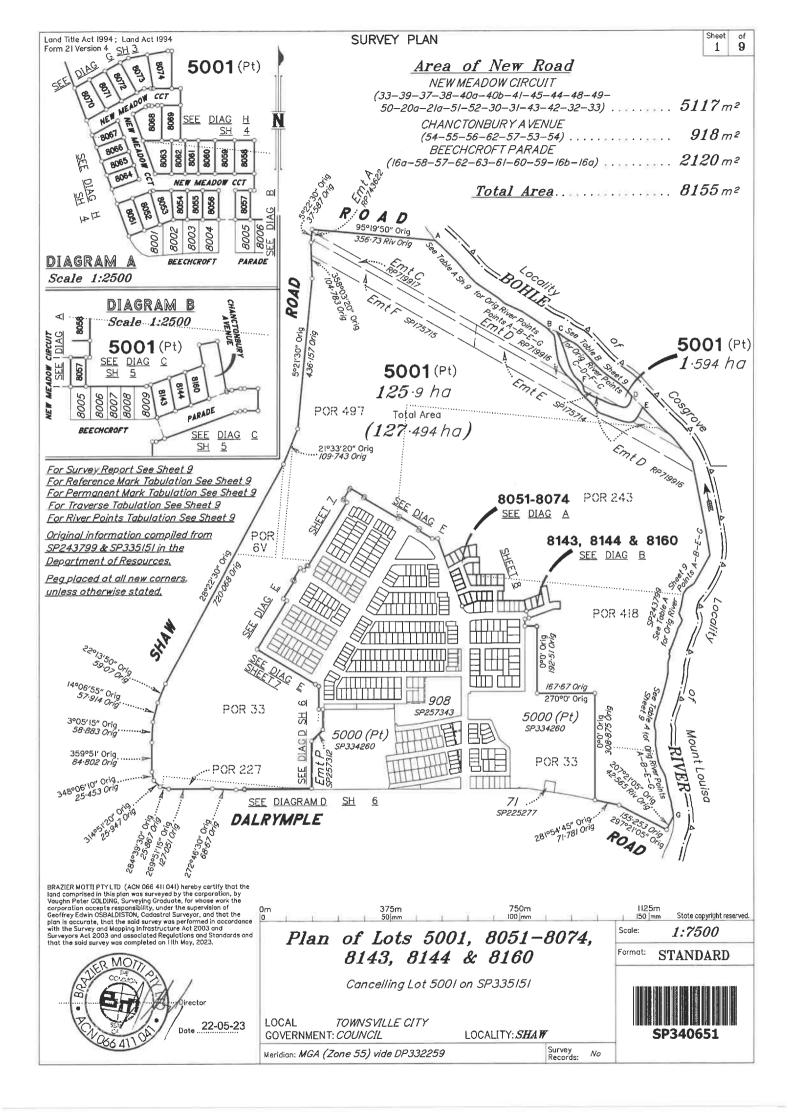
1.0m contour

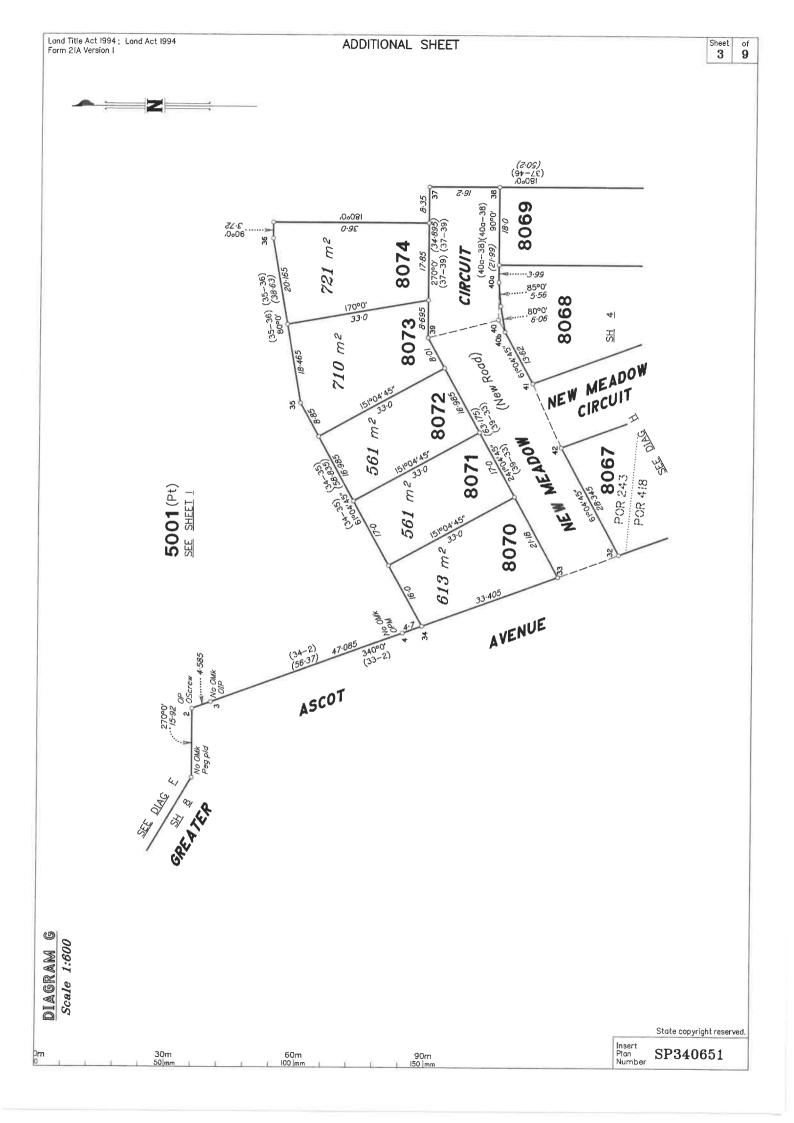
0.5m contour

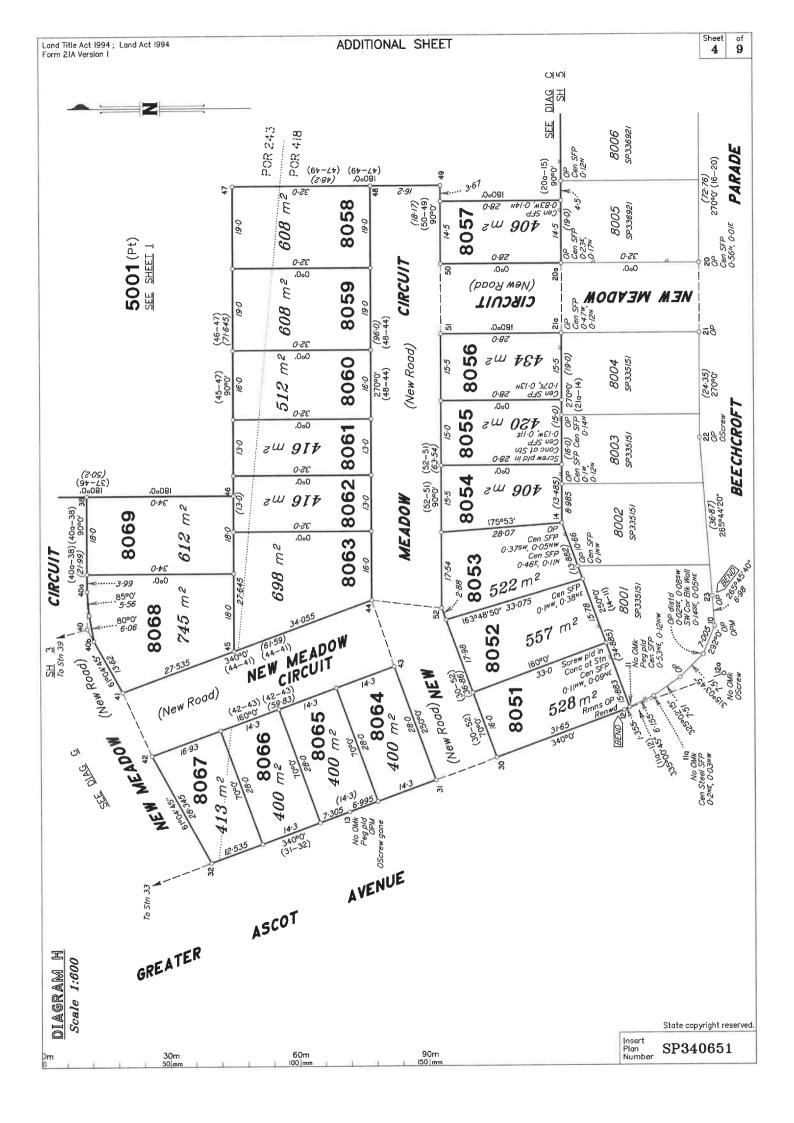
BUILDING ENVELOPES

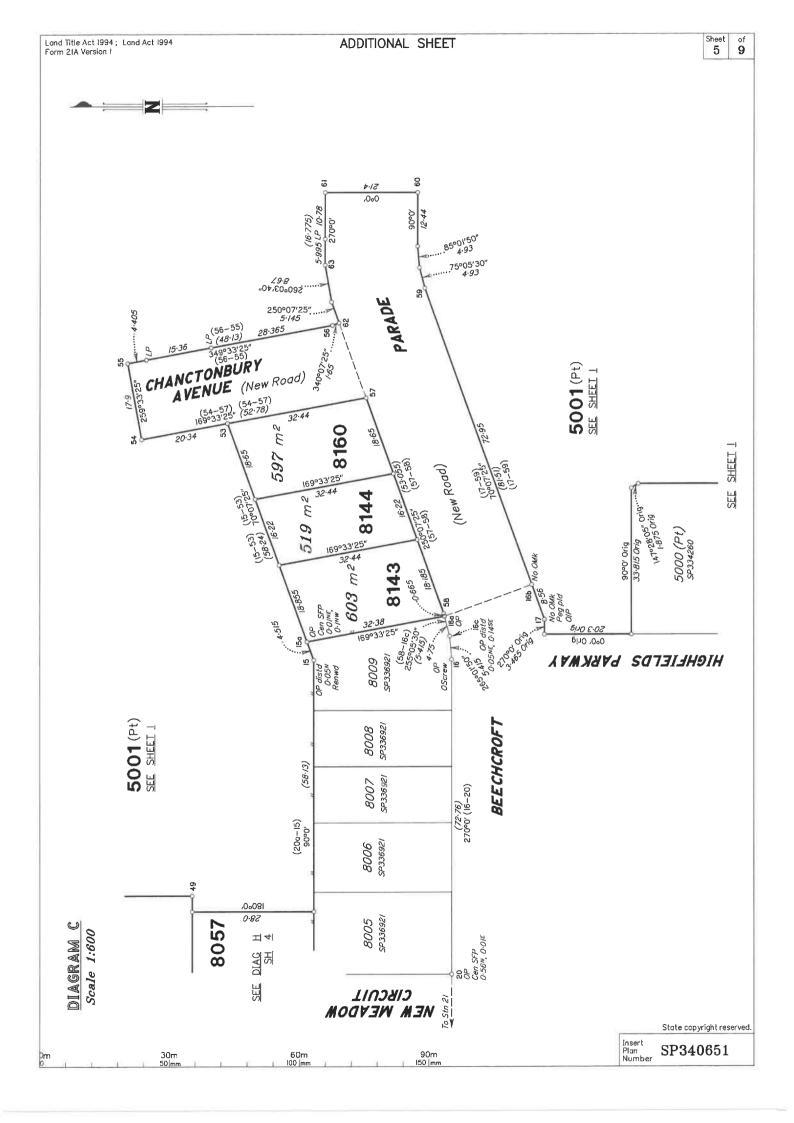
- 1. THE BUILDING ENVELOPES ARE TO COMPLY WITH THE DESIGN CODE SHOWN ON THIS PLAN. GREATER SETBACKS MAY BE REQUIRED TO ACCOMMODATE THE ZONE OF INFLUENCE OF UNDERGROUND SERVICES AS STATED IN COUNCIL'S POLICY ON BUILDING OVER OR ADJACENT TO SEWERS.
- 2. INDICATIVE BUILDING ENVELOPES SHOWN ARE QDC GROUND DWELLING ONLY AND DO NOT ACCOUNT FOR BATTERS OR RETAINING WALLS. A SITE INSPECTION IS REQUIRED PRIOR TO COMMENCEMENT OF DESIGN. REFER DESIGN CODE FOR UPPER FLOOR AND GARAGE SETBACKS.

CORNER SIGHT LINES

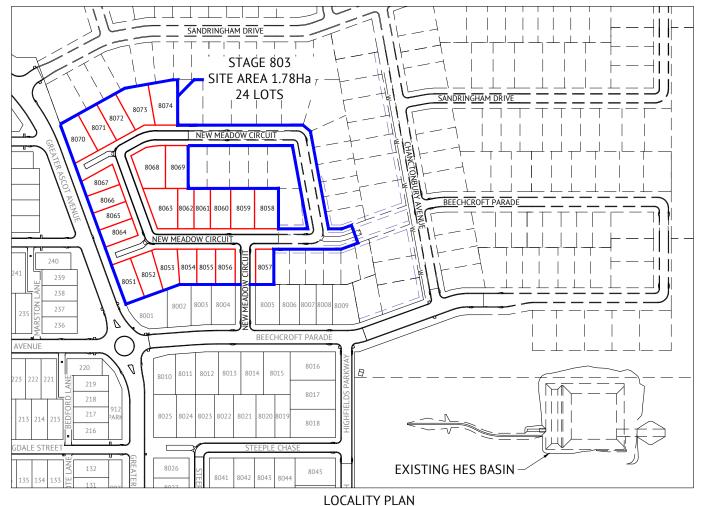

- 1. COMPLY WITH SIGHT LINES REQUIREMENT OF THE QUEENSLAND DEVELOPMENT CODE AT INTERSECTIONS OF ROADS. INTERSECTIONS OF
- LANES AND ROADS ARE EXEMPTED FROM THIS REQUIREMENT 2. THE QUEENSLAND DEVELOPMENT CODE TYPICALLY REQUIRES A 9mx9m EXCLUSION ZONE BASED ON BOUNDARIES.


LIGHT POLES & TELSTRA PITS HAVE NOT BEEN SHOWN


HOUSE, FRONT LOADED FRONT 25m (20m WHERE 15m WIDTH PROPOSED) 12.5m 55% 3.5m 3.5m 6.0m FROM FRONT OF GARAGE WALL & 1.5m MIN FROM DWELL AN ALTERNATIVE TO 1.5m MIN FROM DWELLING MAY BE PERMI	
FRONT 25m (20m WHERE 15m WIDTH PROPOSED) 12.5m 55% 3.5m 3.5m 6.0m FROM FRONT OF GARAGE WALL & 1.5m MIN FROM DWELL	
12.5m 55% 3.5m 3.5m 6.0m FROM FRONT OF GARAGE WALL & 1.5m MIN FROM DWELL	
12.5m 55% 3.5m 3.5m 6.0m FROM FRONT OF GARAGE WALL & 1.5m MIN FROM DWELL	
55% 3.5m 3.5m 6.0m FROM FRONT OF GARAGE WALL & 1.5m MIN FROM DWELL	
3.5m 6.0m FROM FRONT OF GARAGE WALL & 1.5m MIN FROM DWELL	
3.5m 6.0m FROM FRONT OF GARAGE WALL & 1.5m MIN FROM DWELL	
6.0m FROM FRONT OF GARAGE WALL & 1.5m MIN FROM DWELL	
SUBJECT TO PARKSIDE APPROVAL AT TIME OF COVENANT APPR	TTED,
QDC	
QDC	
2m	
3.0m	
N/A	
N/A	
AL OVER	
IE (MIN) ODC	
LESSER OF 50% OF REAR BOUNDARY OR 9m	
9m	
0-1.0m	
ZERO IF LOT 12.5m WIDE. AS PER PRINCIPAL SETBACK IF LOT >12.5m WIDE	
400mm	
2 STOREYS	
2 STOREYS 4mx4m	


DESIGN CODE - ALL ALLOTMENTS

	PAR-00	80
ACCESS PLAN - GREATER ASCOT	SHEET NUMBER	A



GREATER ASCOT STAGE 803 GREATER ASCOT AVENUE, SHAW FOR PARKSIDE DEVELOPMENT PTY LTD

LOT 5001 ON SP321005

				Level Datum: AHD (DERIVED)		
No.	Date	Details	Check	B.M. Used: PSM193061 RL.11.206		
А	31.05.23	Original Issue	GEO	Coordinate Projection: Plane		
				Coordinate Datum: Arbitrary		
				Origin of Coordinates: PSM193061	E:	-
				Meridian: MGA (Zone 55)	N:	-
				Map Reference: 8259-31131		
				Contour Interval:	Surveyed by:	BM
				Job No: 26700-248-01	Drawn: MJM	
				File No: 26700_246A.dwg	Approved:	

TOWNSVILLE EARTHMOVING DO HEREBY CERTIFY THAT THE WORKS SHOWN ON THE 'AS CONSTRUCTED' DRAWINGS HAVE BEEN CONSTRUCTED IN ACCORDANCE WITH THE DRAWINGS AND CONTRACT DOCUMENTS APPROVED BY COUNCIL FOR THE CONSTRUCTION OF THE PROJECT.

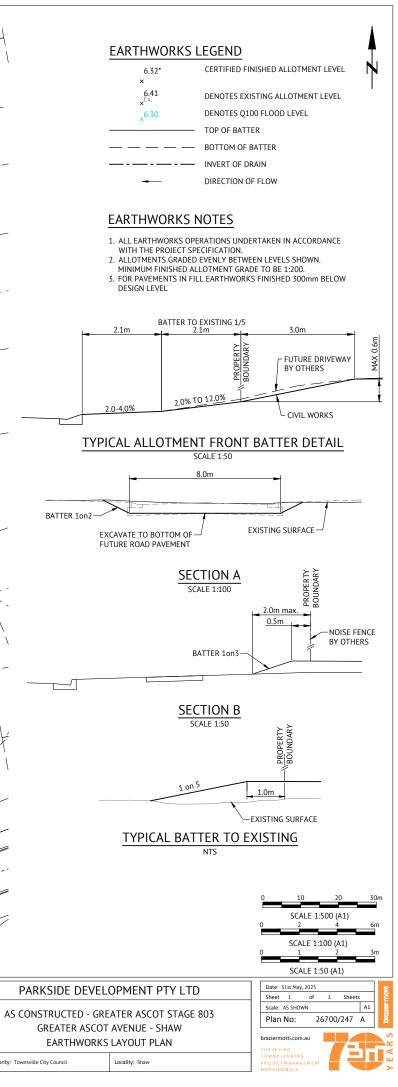
AUTHORISED DELEGATE DATE .02/06/23

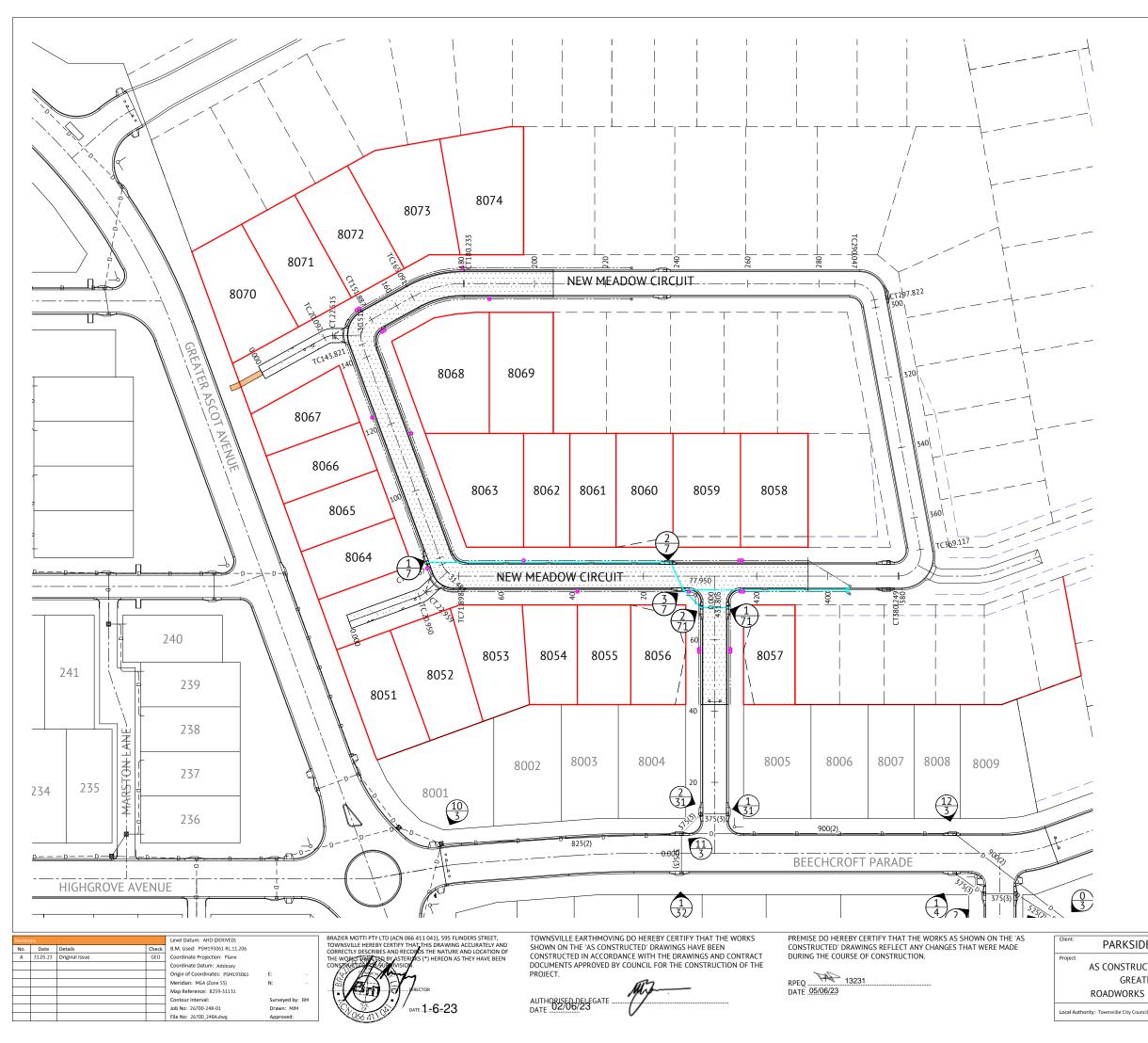
PREMISE DO HEREBY CERTIFY THAT THE WORKS AS SHOWN ON THE 'AS CONSTRUCTED' DRAWINGS REFLECT ANY CHANGES THAT WERE MADE DURING THE COURSE OF CONSTRUCTION.

SCALE 1:1500 (A1)

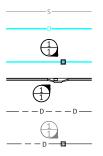
RPEQ 13231 DATE 05/06/23

Client Project Local Authority: Townsville City Council


DRAWING SCHEDULE					
DRAWING NO.	DRAWING TITLE				
246	COVER SHEET, LOCALITY PLAN & DRAWING SCHEDULE				
247	EARTHWORKS LAYOUT PLAN				
248	ROADWORKS & STORMWATER DRAINAGE PLAN				
249	NEW MEADOW CIRCUIT LONGITUDINAL AND CROSS SECTIONS				
250	NEW MEADOW CIRCUIT LONGITUDINAL AND CROSS SECTIONS				
251	INTERSECTION AND CONCRETE DETAILS				
252	Q2 STORMWATER LONGITUDINAL SECTION SHEET 1 OF 2				
253	Q2 STORMWATER LONGITUDINAL SECTION SHEET 2 OF 2				
254	WATER RETICULATION PLAN				
255	SEWER RETICULATION PLAN				


PARKSIDE DEVELOPMENT PTY LTD

AS CONSTRUCTED - GREATER ASCOT STAGE 803 GREATER ASCOT AVENUE - SHAW COVER SHEET, LOCALITY PLAN & DRAWING SCHEDULE



12.08 ____ 11.94 12.2 12.3 8074 AD CHAN 8073 8072 12.15 12.13* \$1.0gt 12.09* £ 8071 12.00 12 -11.71* ╜╼ 11.19*× ст297.822 8070 12.19* NEW MEADOW CIRCUIT XX ╈∼╖ 12.03 2.09 7C165.091 12.1 TC143.821 GRE 11.83 ATER 8068 8069 11' Ά` PS CUT LOW ARE TO SELF DRAIN C004 8067 11.97* 12.28* 12.24* NENUE 12.23* 12.23 12.24* 12.21 12.14* 12.26 8066 8063 8062 8061 8060 8059 8058 8065 <u>12.(</u> Exl 52_11.93 11.93* 11.91* 2 11.92* 11.92* 11.92 11.92* TC369.117 B 11.8 NEW MEADOW CIRCUIT 1.89 8064 Ç004⁄ EX.10.66 -11.50* +11.69 -77.950--___<u>11.7</u> CT78.007 CIRCUIT ຊີ 11.90 11.87* 11.87 30 12.1 11.91* 11.91 11.91* 11.92 MEADOW 240 8054 8055 8056 8057 8053 241 8052 NEW 239 8051 12.08* 12.09* 12.06* 12.06* 12.11 238 Ex Ŧ 8003 8004 8005 8006 8007 8008 8009 8002 237 11.50 F2.6 235 234 8001 $\langle | \rangle$ D 236 -0.000 BEECHCROFT PARADE HIGHGROVE AVENUE 11.18 ¥F2.44 ЛĪ BRAZIER MOTTI PTY LTD (ACN 066 411 041), 595 FLINDERS STREET, TOWNSVILLE HEREBY CERTIFY THAT THIS DRAWING ACCURATELY AND CORRECTLY DESCRIBES AND RECORDS THE NATURE AND LOCATION OF THE WORKE THEY AS THE ASTENISKS (*) HEREON AS THEY HAVE BEEN TOWNSVILLE EARTHMOVING DO HEREBY CERTIFY THAT THE WORKS SHOWN ON THE 'AS CONSTRUCTED' DRAWINGS HAVE BEEN PREMISE DO HEREBY CERTIFY THAT THE WORKS AS SHOWN ON THE 'AS CONSTRUCTED' DRAWINGS REFLECT ANY CHANGES THAT WERE MADE Client: Level Datum: AHD (DERIVED) B.M. Used: PSM193061 RL.11.206 CONSTRUCTED IN ACCORDANCE WITH THE DRAWINGS AND CONTRACT DURING THE COURSE OF CONSTRUCTION. 31.05.23 Original Issu GEO Coordinate Projection: Plane Project DOCUMENTS APPROVED BY COUNCIL FOR THE CONSTRUCTION OF THE oordinate Datum: Arbitrary Origin of Coordinates: PSM193061 PROJECT. 13231 Meridian: MGA (Zone 55) Map Reference: 8259-31131 $t_{\rm Pl}$ AUTHORISED DELEGATE Contour Interval Surveyed by: BM 1-6-23 Job No: 26700-248-01 Drawn: MJM Local Authority: Townsville City Council File No: 26700_247A.dwg

STORMWATER LEGEND:

SEWER MAIN

STORMWATER DRAINAGE LINE

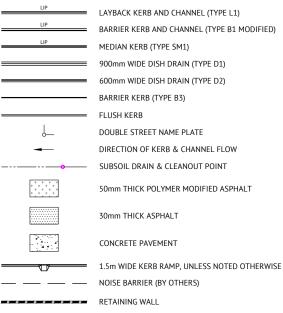
STORMWATER MANHOLE (MANHOLE NO./LINE NO.) KERB INLET PIT (PIT NO./LINE NO.)

EXISTING STORMWATER DRAINAGE LINE

EXISTING STORMWATER MANHOLE (MANHOLE NO./LINE NO.)

EXISTING KERB INLET PIT (PIT NO./LINE NO.)

DUMPED ROCK SCOUR PROTECTION ON GEOTEXTILE FABRIC (200g/m²) ROCK GRADING - 400mm THICK 75mm-325mm, AVERAGE SIZE 200mm


KERB AND CHANNEL DRAINAGE CONNECTION WITH PVC PIPE

STORMWATER NOTES

- 1. ALL WORKS TO BE CONSTRUCTED IN ACCORDANCE WITH RELEVANT LATEST ISSUE COUNCIL STANDARD DRAWINGS AND SPECIFICATIONS, UNLESS NOTED OTHERWISE. 2. FOR HYDROLOGY AND HYDRAULIC DETAILS, REFER TO
- STORMWATER DATA TABLE DRAWINGS. 3. FOR STORMWATER SETOUT, LEVELS, PIPE LENGTHS, PIPE CLASS AND STRUCTURE TYPES, REFER STORMWATER LONGITUDINAL DRAWINGS.

- DRAWINGS. 4. ALL PIPE CUTS TO BE MADE USING A MASONRY SAW. 5. ALL TRENCHES UNDER ROAD PAVEMENT (INCLUDING FUTURE) TO BE BACKFILLED WITH CRUSHER DUST TO SUBGRADE LEVEL. 6. FOR KERB AND CHANNEL DRAINAGE CONNECTIONS REFER TO TCC STANDARD DRAWING SD-085

ROADWORKS LEGEND

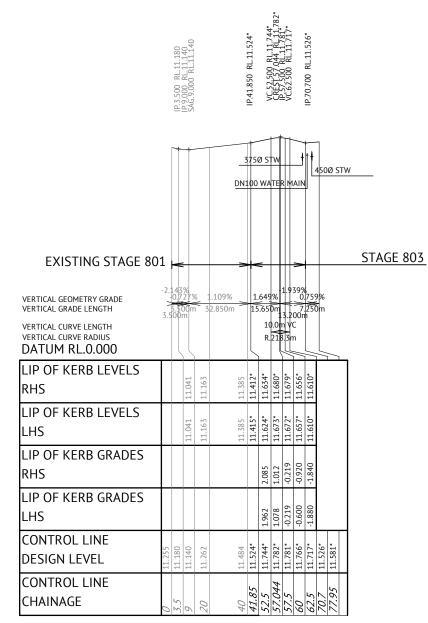
ROADWORKS NOTES

1. ALL WORKS TO BE CONSTRUCTED IN ACCORDANCE WITH RELEVANT LATEST ISSUE COUNCIL STANDARD DRAWINGS AND SPECIFICATIONS, UNLESS NOTED OTHERWISE.

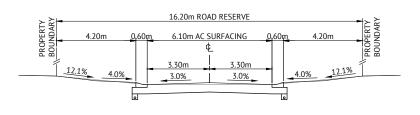
2. ALL SUBSOIL DRAINS TO BE GRADED AT MINIMUM 0.5% FROM HIGH POINT TO OUTLET, UNLESS NOTED OTHERWISE

PARKSIDE DEVELOPMENT PTY LTD

AS CONSTRUCTED - GREATER ASCOT STAGE 803 **GREATER ASCOT AVENUE - SHAW** ROADWORKS & STORMWATER DRAINAGE PLAN


PAVEMENT DESIGN

NEW MEADOW CIRCUIT


URBAN TYPE B

30mm ASPHALT SURFACING (AC10M) PRIME COAT 1.1L/m² (AMCO) 125mm BASE COURSE (DMR TYPE 2.1) 170mm SUB BASE COURSE (DMR TYPE 2.3 - 0.8 < UCS < 1.5MPa) 200mm SUBGRADE REPLACEMENT (DMR TYPE 2.3 UCS > 1.5MPa) ROAD LONGITUDINAL SECTION NOTES

1. FOR LEVEL INFORMATION REFER ROADWORKS DETAILS PLAN.

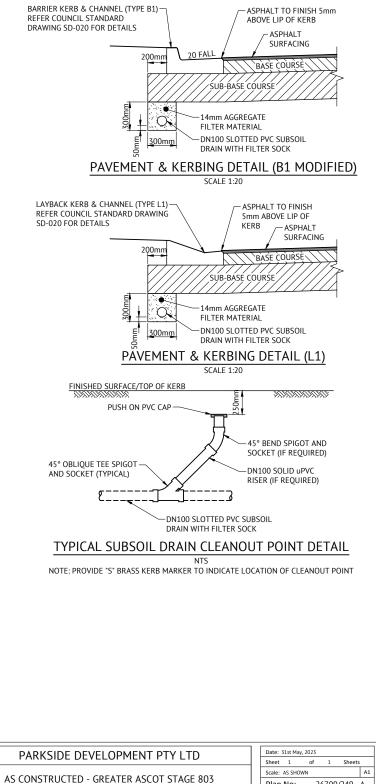
NEW MEADOW CIRCUIT LONGITUDINAL SECTION SCALE 1:1000 HORIZONTAL, SCALE 1:100 VERTICAL

TYPICAL SECTION

SCALE 1:100 (A1)

Level Datum: AHD (DERIVED) 31.05.23 Original Issue GEO Contour Interval

B.M. Used: PSM193061 RL.11.206 Coordinate Projection: Plane Coordinate Datum: Arbitrary Origin of Coordinates: PSM193061 Meridian: MGA (Zone 55) Map Reference: 8259-31131 Surveyed by: BM Job No: 26700-248-01 Drawn: MJM File No: 26700_249A.dwg


TOWNSVILLE EARTHMOVING DO HEREBY CERTIFY THAT THE WORKS SHOWN ON THE 'AS CONSTRUCTED' DRAWINGS HAVE BEEN CONSTRUCTED IN ACCORDANCE WITH THE DRAWINGS AND CONTRACT DOCUMENTS APPROVED BY COUNCIL FOR THE CONSTRUCTION OF THE PROJECT.

AUTHORISED DELEGATE

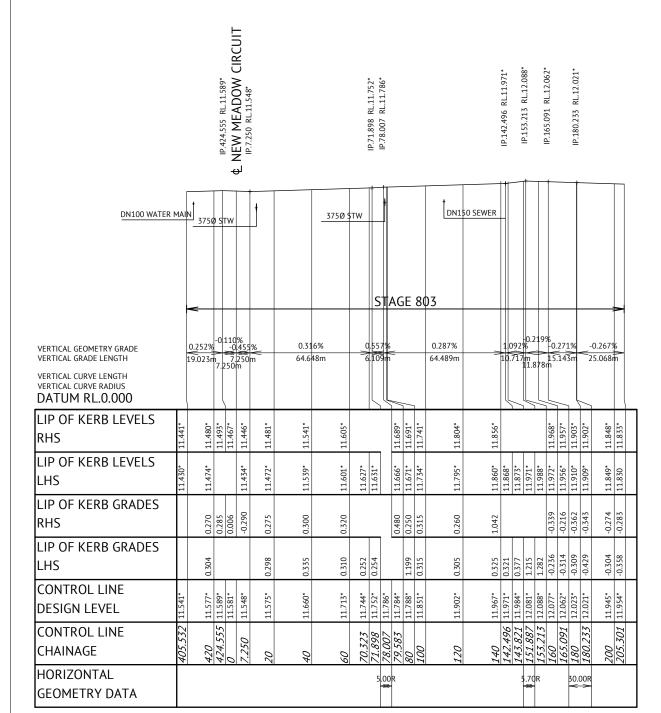
PREMISE DO HEREBY CERTIFY THAT THE WORKS AS SHOWN ON THE 'AS CONSTRUCTED' DRAWINGS REFLECT ANY CHANGES THAT WERE MADE DURING THE COURSE OF CONSTRUCTION.

RPEQ 13231 DATE 05/06/23

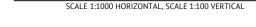
Client: Project

GREATER ASCOT AVENUE - SHAW NEW MEADOW CIRCUIT LONGITUDINAL AND CROSS SECTIONS

Date: 31st May	, 2023				e
Sheet 1	of	1	Sheets		ΠĒ
Scale: AS SHOW	WN			A1	
Plan No:	2	6700	/249	A	ĝ
braziermotti.com	.au				
S U R V E Y I N G				1.	
TOWNPLANNING					
PROJECTMANAG	EMENT				


PAVEMENT DESIGN NEW MEADOW CIRCUIT

URBAN TYPE B


30mm ASPHALT SURFACING (AC10M) PRIME COAT 1.1L/m² (AMCO) 125mm BASE COURSE (DMR TYPE 2.1) 140mm SUB BASE COURSE (DMR TYPE 2.3 - 0.8 < UCS < 1.5MPa) 200mm SUBGRADE REPLACEMENT (DMR TYPE 2.3 UCS > 1.5MPa)

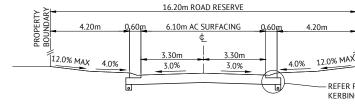
ROAD LONGITUDINAL SECTION NOTES

1. FOR LEVEL INFORMATION REFER ROADWORKS DETAILS PLAN.

				Level Datum: AHD (DERIVED)
No.	Date	Details	Check	B.M. Used: PSM193061 RL.11.206
А	31.05.23	Original Issue	GEO	Coordinate Projection: Plane
				Coordinate Datum: Arbitrary
				Origin of Coordinates: PSM19306
				Meridian: MGA (Zone 55)
				Map Reference: 8259-31131
				Contour Interval:
				Job No: 26700-248-01
				File No: 26700_250A.dwg

BRAZIER MOTTI PTY LTD (ACN 066 411 041), 595 FLINDERS STREET, TOWNSVILLE HEREBY CERTIFY THAT THIS DRAWING ACCURATELY AND CORRECTLY DESCRIBES AND RECORDS THE NATURE AND LOCATION OF THE WORKS WHAT FOR BY ASTERIKS (*) HEREON AS THEY HAVE BEEN n Surveyed by: BM 1-6-23 Drawn: MJM Approved:

TOWNSVILLE EARTHMOVING DO HEREBY CERTIFY THAT THE WORKS SHOWN ON THE 'AS CONSTRUCTED' DRAWINGS HAVE BEEN CONSTRUCTED IN ACCORDANCE WITH THE DRAWINGS AND CONTRACT DOCUMENTS APPROVED BY COUNCIL FOR THE CONSTRUCTION OF THE PROJECT.


AUTHORISED DELEGATE

PREMISE DO HEREBY CERTIFY THAT THE WORKS AS SHOWN ON THE 'AS CONSTRUCTED' DRAWINGS REFLECT ANY CHANGES THAT WERE MADE DURING THE COURSE OF CONSTRUCTION.

RPEQ 13231

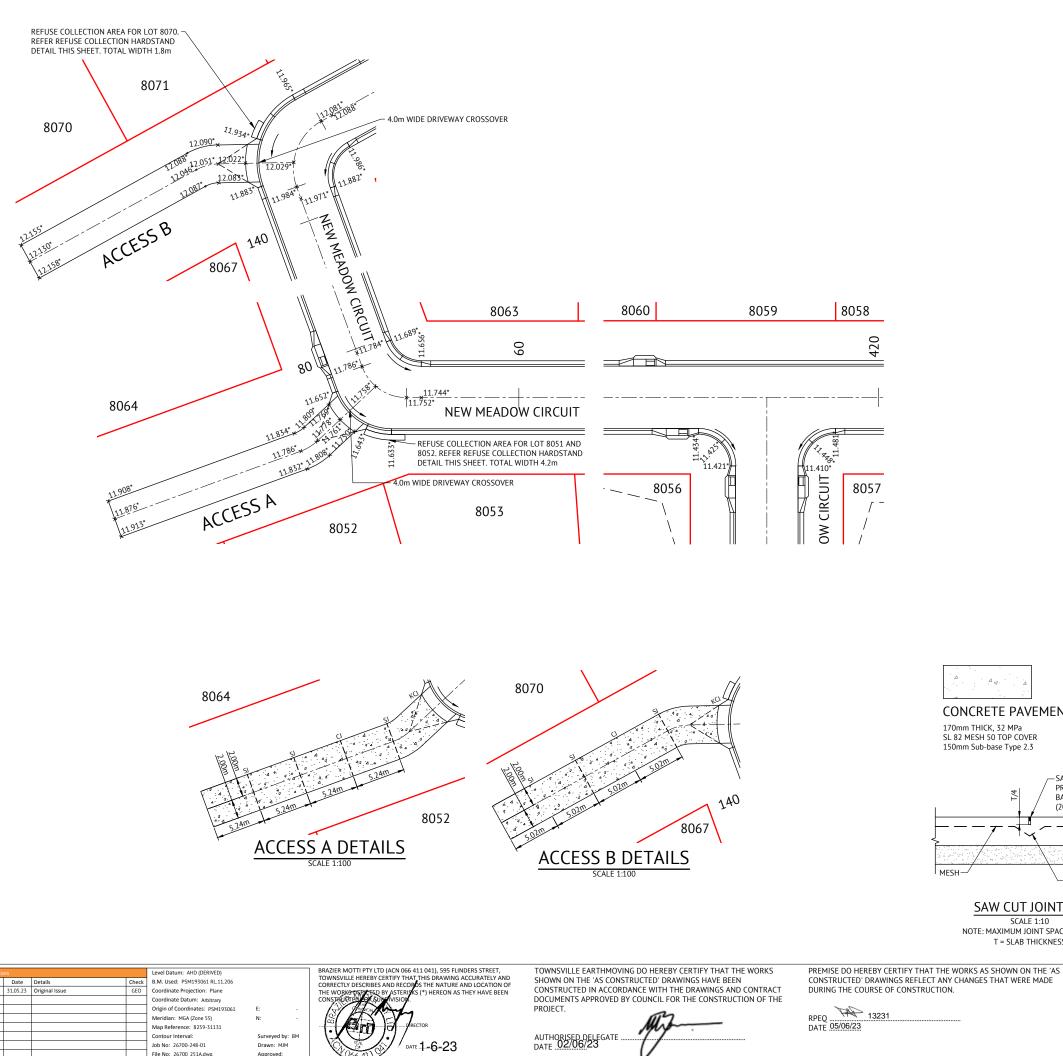
DATE 05/06/23

Client: Project: Local Authority: Townsv

TYPICAL SECTION

PARKSIDE DEVELOPMENT PTY LTD

REFER PAVEMENT &


KERBING DETAIL (L1)

AS CONSTRUCTED - GREATER ASCOT STAGE 803 NEW MEADOW CIRCUIT LONGITUDINAL AND CROSS SECTIONS

GREATER ASCOT AVENUE - SHAW

le	City	Council	

-6-23

Job No: 26700-248-01

File No: 26700_251A.dwg

Drawn: MJM

MESH

4 1.

170mm THICK, 32 MPa

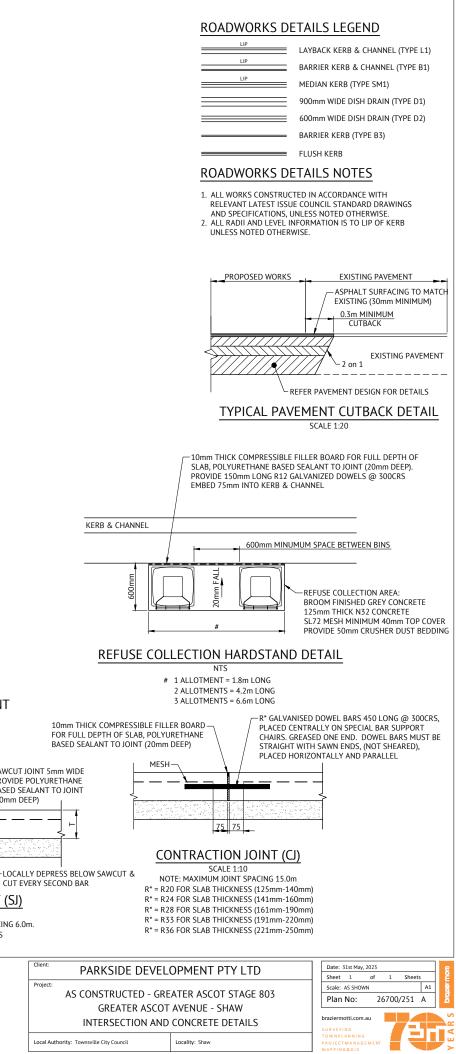
SL 82 MESH 50 TOP COVER

150mm Sub-base Type 2.3

CONCRETE PAVEMENT

SAW CUT JOINT (SJ)

SCALE 1:10 NOTE: MAXIMUM JOINT SPACING 6.0m.


T = SLAB THICKNESS

Client roject Local Authority: Townsville City Counci

- SAWCUT IOINT 5mm WIDE PROVIDE POLYURETHANE

BASED SEALANT TO JOINT (20mm DEEP)

CUT EVERY SECOND BAR

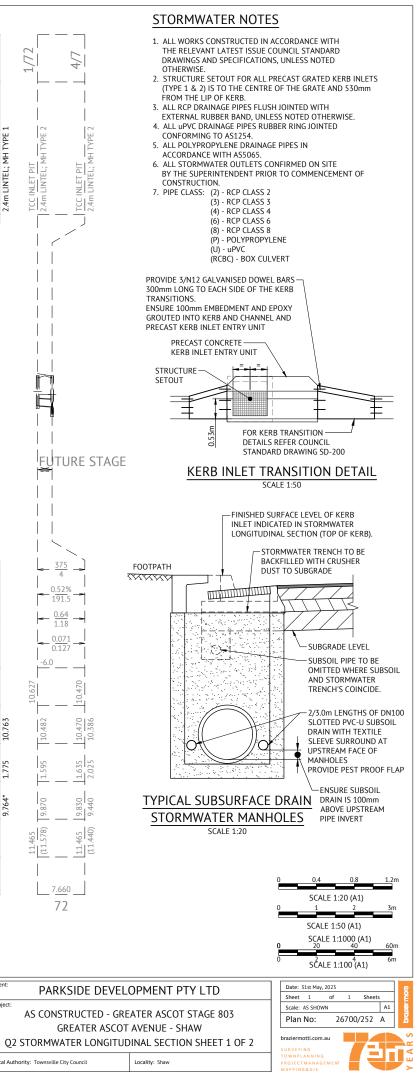
STRUCTURE NAME/	//1	2/7 3/7	4/7	<u> </u>		8/7	<i>1/6</i>	10/7		1/71	3/7
STRUCTURE DESCRIPTION	TCC INLET PIT 2.4m LINTEL; MH TYPE 1	TCC INLET PIT 2.4m LINTEL; MH TYPE 1 TCC INLET PIT 2.4m LINTEL: MH TYPE 1	TICC INLET PIT	2.4m LINTEL; MH TYPE 2 TCC MANHOLE TCPE 2 TCPE 2 CONCODO			2.4m LINTEL; MH TYPE 2 TCC INLET PIT	2.4m LINTEL; MH TYPE 2 TCC INLET PIT 2.4m LINTEL; MH TYPE 2	— —	TCC INLET PIT 2.4m LINTEL; MH TYPE 1 TCC INLET PIT 2.4m LINTEL; MH TYPE 1	TCC INLET PIT 2.4m LINTEL; MH TYPE 1
		DN 100 WATER	MAIN						DN100 V		
	<u>< S</u>	TAGE 803	 	F.	UTURE STAGE	> <	EXISTIN	G STAGE >	FUTURE STAGE	STAGE 803	
IPE SIZE (mm) IPE CLASS	375	375	450 4	$-\frac{600}{3}$ $-\frac{750}{2}$	↓ →	<u>900</u> 2	900 - 2	900 9	$\frac{900}{2}$ $\frac{900}{2}$ $\frac{900}{2}$		575 4
IPE GRADE (%) IPE SLOPE (1 in X)	0.420%238.256	0.525%	<u>0.285%</u> 350.726	- 0.20% 0.22% 497.3 454.4	0.40%	<u>0.20%</u> 498.8	<u> </u>	<u>- 0.21%</u> 0. 473.0 4	<u>21%</u> 79.1 0.23% 432.4	<u> </u>	300% 33.826
JLL PIPE VELOCITY (m/s) ART FULL VELOCITY (m/s) IPE FLOW (cumecs) IPE CAPACITY AT GRADE (cumecs)	0.60 1.06 0.067 0.112	1.22 1.22 0.134 0.120	1.28 1.28 0.203 0.159	1.19 1.36 0.337 0.531 0.275 0.545	$\begin{array}{c} & & 1.22 \\ \hline 1.77 \\ \hline 0.558 \\ \hline 0.733 \\ \end{array} \begin{array}{c} & & - \\ \hline \\ & & - \end{array}$	<u>1.12</u> 1.45 <u>0.733</u> 0.847	1.18 1.92 0.774 1.184	0.805 0.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.61 0. 0.007 0.1 0.127 0.1	013 013
JLL PIPE VELOCITY (m/s) ART FULL VELOCITY (m/s) PE FLOW (cumecs) PE CAPACITY AT GRADE (cumecs) ATUM RL	1.06	0.134 0.120	0.203	<u>0.337</u> 0.5 <u>31</u> 0.275 0.545	$ \begin{array}{c} - & 0.558 \\ 0.733 \\ - & - \\ 0 \\ - & - $	0.733	1.92 0.774 1.184	<u>0.805</u> 0. 0.870 0.	811 0.904 - 865 0.910 -	$\begin{array}{c c} 0.61 & 0 \\ \hline 0.007 & 0.1 \\ \hline -6.0 & 0.1 \\ \hline \end{array}$	0.67 013 111
JLL PIPE VELOCITY (m/s) ART FULL VELOCITY (m/s) PE FLOW (cumecs) PE CAPACITY AT GRADE (cumecs) ATUM RL VSE IN STRUCTURE	1.06 0.067 0.112 -5.0	1.22 0.134 0.120 500 11 100 10	0.203 0.159	<u>0.337</u> 0.275 <u>0.545</u> <u>0.545</u> <u>0.545</u>		0.733 0.847 	1.92 0.774 1.184	<u>0.805</u> <u>0.</u> <u>0.870</u> <u>0.</u> <u>8</u> <u>6</u>	811 0.904 865 0.910 525 0.910 525 0.910	0.61 0. 0.007 0.1 0.127 0. -6.0 6 0 0 0 0 0 0 0 0 0 0 0 0 0	013 111 100001
JLL PIPE VELOCITY (m/s) ART FULL VELOCITY (m/s) PE FLOW (cumecs) PE CAPACITY AT GRADE (cumecs) ATUM RL VSE IN STRUCTURE GL IN PIPE	1.06 0.067 -5.0	1.22 0.134 0.120 1000 1000 1000 1000 1000 1000 100	0.203 0.159 0.159 0.450 0.450 0.450 0.450 0.0450 0.0450 0.0450 0.000	0.337 0.275 0.275 0.545 0.545 0.545 0.545 0.545 0.545 0.545	$\begin{array}{c c} & & & \\ \hline \\ & & & \\ \hline & & & \\ \hline & & \\ \hline & & & \\ \hline \end{array} \\ \hline \\ \hline & & & \\ \hline \end{array} \\ \hline \\ \hline \\ \hline \end{array} \\ \hline \\ \hline \end{array} $		1.92 0.774 1.184 0.774 0	0.805 0 0.870 0 0.870 0 52 26 6 22 6 22 6 22 6 0 5 26 6 0 5 26 6 0 5 26 6 0 5 26 6 0 5 26 6 0 5 26 6 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0 7 0 0 7 0 7	811 0.904 865 0.904 0.910 0.9	0.61 0 0.007 0.1 0.127 0.1 -6.0	107.013 111 107.063 107.063
JLL PIPE VELOCITY (m/s) ART FULL VELOCITY (m/s) PE FLOW (cumecs) PE CAPACITY AT GRADE (cumecs) ATUM RL VSE IN STRUCTURE IGL IN PIPE	1.06 0.067 0.112 -5.0 057 11 75.0 057 11 11 11 11 11 10 68 57 1	1.55 1.56 1.647 1.075 1.0946 1.0946 1.0946 1.0946 1.0946 1.0946 1.0946 1.0946 1.0946 1.0946 1.0946 1.0946 1.1075 1.0075 1.0076 1.10755 1.10755 1.10755 1.107555 1.1075555 1.107555555555555555	0.203 0.159 0.159 0.159 0.159 0.159 0.159 0.159 0.159	0.235 0.2386 0.2310,386 0.210,330 0.241 0.241 0.2458 10.290 10.241 10.230 10.291 0.241 10.230 10.291 10.241 10.231 10.291 10.241 10.230 10.241 10.241 10.231 10.241 10.241	$\begin{array}{c} + \frac{1}{2,374} \\ - \frac{1}{2,374} \\ - \frac{1}{2,374} \\ - \frac{1}{2,233} \\ - \frac{1}{2,333} \\ - \frac{1}{$	0.733 0.847 0.847 0.847 0.847 0.847 0.847 0.847 0.847 0.847 0.847 0.847 0.847 0.847	1.92 0.774 1.184 2.375 9.693 9.693 9.693	2.405 9.635 2.438 9.583 9.583 2.478 9.583 9.583 2.478 9.550 0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10.61 0.007 0.127 0.134 0.0097 0.127 0.10897 10.898 10.898 10.897 10.897 10.897 10.897 10.897 10.898 10.0898 10.0898 10.0898 10.0898 10.0898 10.0898 10.009 10.0000 10.0000 10.000	1685 10.896 10.901 1.775 10.763 10.901
JLL PIPE VELOCITY (m/s) ART FULL VELOCITY (m/s) PE FLOW (cumecs) PE CAPACITY AT GRADE (cumecs) ATUM RL VSE IN STRUCTURE IGL IN PIPE DEPTH OF INVERT BELOW FSL VVERT LEVEL INISHED (& EXISTING)	1.06 0.067 0.112 -5.0 00 27 11 11	1.22 0.134 0.120 10001 1000000	0.203 0.159 0.159 0.470 0.470 0.470 0.470 0.470	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.733 0.847 0.847 0.847 0.847 0.847 0.847 0.847 0.847 0.847 0.847 0.847 0.847 0.847 0.847 0.847 0.847 0.847 0.847	8.670 8.670 8.640 2.375 9.693 9.693 9.693 9.693 9.693	8.610 2.405 9.635 9.555 9.583 9.583 9.583 8.5510 2.478 9.550 9.583	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	10.898 9.991* 1.591 10.898 -e°0 9.912* 1.661 10.897 9.883* 1.661 10.897 9.883* 1.661 10.897	167 013 111 100.001 100.763 100.763
ULL PIPE VELOCITY (m/s) ART FULL VELOCITY (m/s) IPE FLOW (cumecs) IPE CAPACITY AT GRADE (cumecs) ATUM RL	1.06 0.067 0.112 -5.0 057 11 75.0 057 11 11 11 11 11 10 68 57 1	1.22 0.134 0.120 1.0946 1.0946 1.0946 1.0946 1.0946 1.0946 1.0946 1.0946 1.0946 1.1075 1.00946 1.1075 1.00946 1.1075	0.203 0.159 0.159 0.159 0.159 0.159 0.159 0.159 0.159	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0.733 0.847 0.847 0.847 0.847 0.847 0.847 0.847 0.847 0.847 0.847 0.847 0.847 0.847 0.847 0.847 0.847 0.847 0.847	1.92 0.774 1.184 2.375 9.693 9.693 9.693	(10.284) 8.610 2.405 9.635 0.028 10.988 8.550 2.438 9.583 9.583 0.268° 10.333 8.510 2.478 9.550 0.283° 0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11.564* 11.564* 11.564* 10.898 1.591 1.591 10.898 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97	9.764* 1.775 10.763 10.901 1110 5

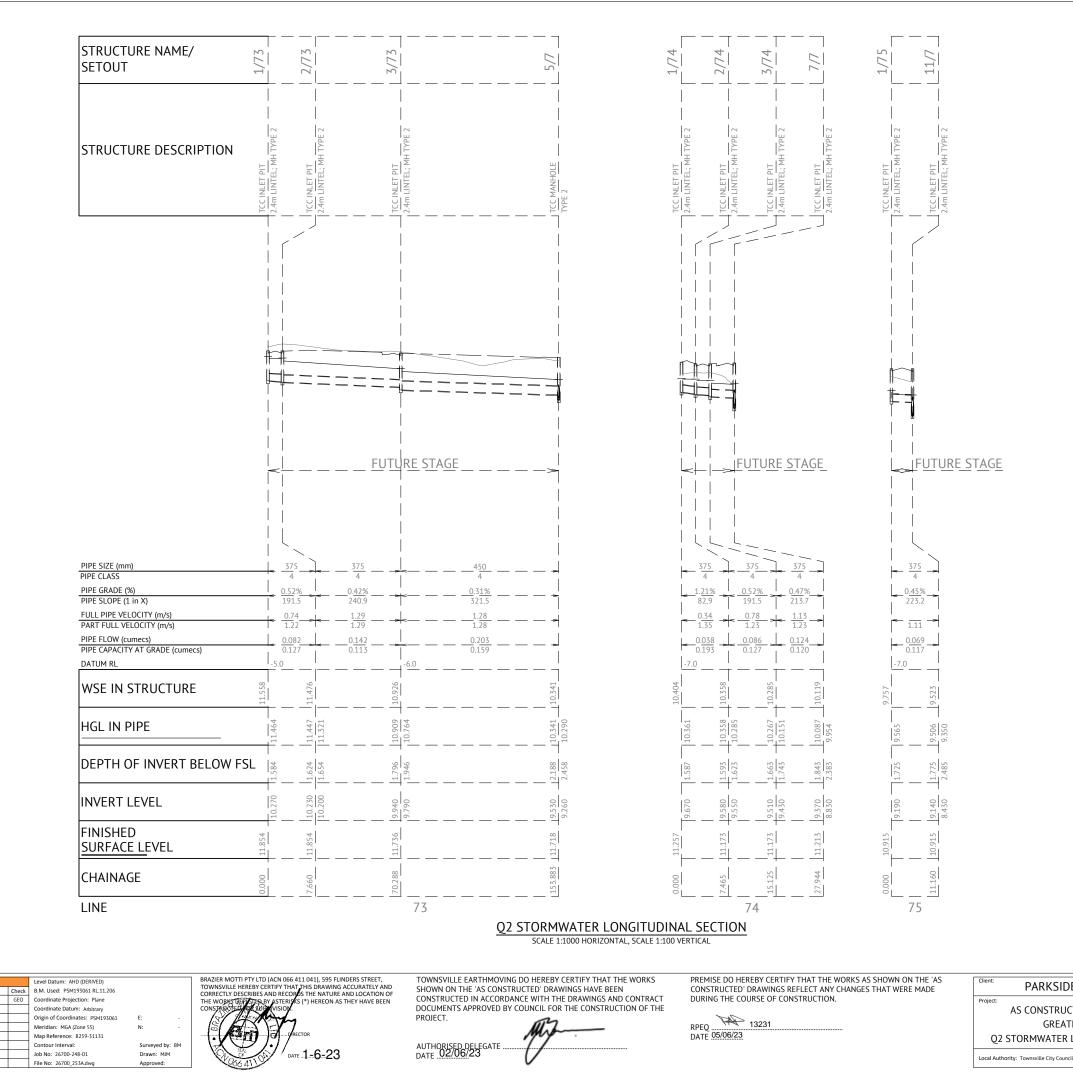
Level Datum: AHD (DERIVED) B.M. Used: PSM193061 RL.11.206 Coordinate Projection: Plane A 31.05.23 Original Issue GEO Coordinate Datum: Arbitrary Origin of Coordinates: PSM193061 Meridian: MGA (Zone 55) Map Reference: 8259-31131 Contour Interval Job No: 26700-248-01 File No: 26700_252A.dwg

CONSTRUCT Surveyed by: BM Drawn: MJM Approved:

BRAZIER MOTTI PTY LTD (ACN 066 411 041), 595 FLINDERS STREET, TOWNSVILLE HEREBY CERTIFY THAT THIS DRAWING ACCURATELY AND CORRECTLY DESCRIBES AND RECORD STHE NATURE AND LOCATION OF THE WORKSTEPICED BY ASTERISKS (*) HEREON AS THEY HAVE BEEN PROJECT.

1-6-23


TOWNSVILLE EARTHMOVING DO HEREBY CERTIFY THAT THE WORKS SHOWN ON THE 'AS CONSTRUCTED' DRAWINGS HAVE BEEN CONSTRUCTED IN ACCORDANCE WITH THE DRAWINGS AND CONTRACT DOCUMENTS APPROVED BY COUNCIL FOR THE CONSTRUCTION OF THE


AUTHORISED DELEGATE DATE 02/06/23

PREMISE DO HEREBY CERTIFY THAT THE WORKS AS SHOWN ON THE 'AS CONSTRUCTED' DRAWINGS REFLECT ANY CHANGES THAT WERE MADE DURING THE COURSE OF CONSTRUCTION.

DATE 05/06/23

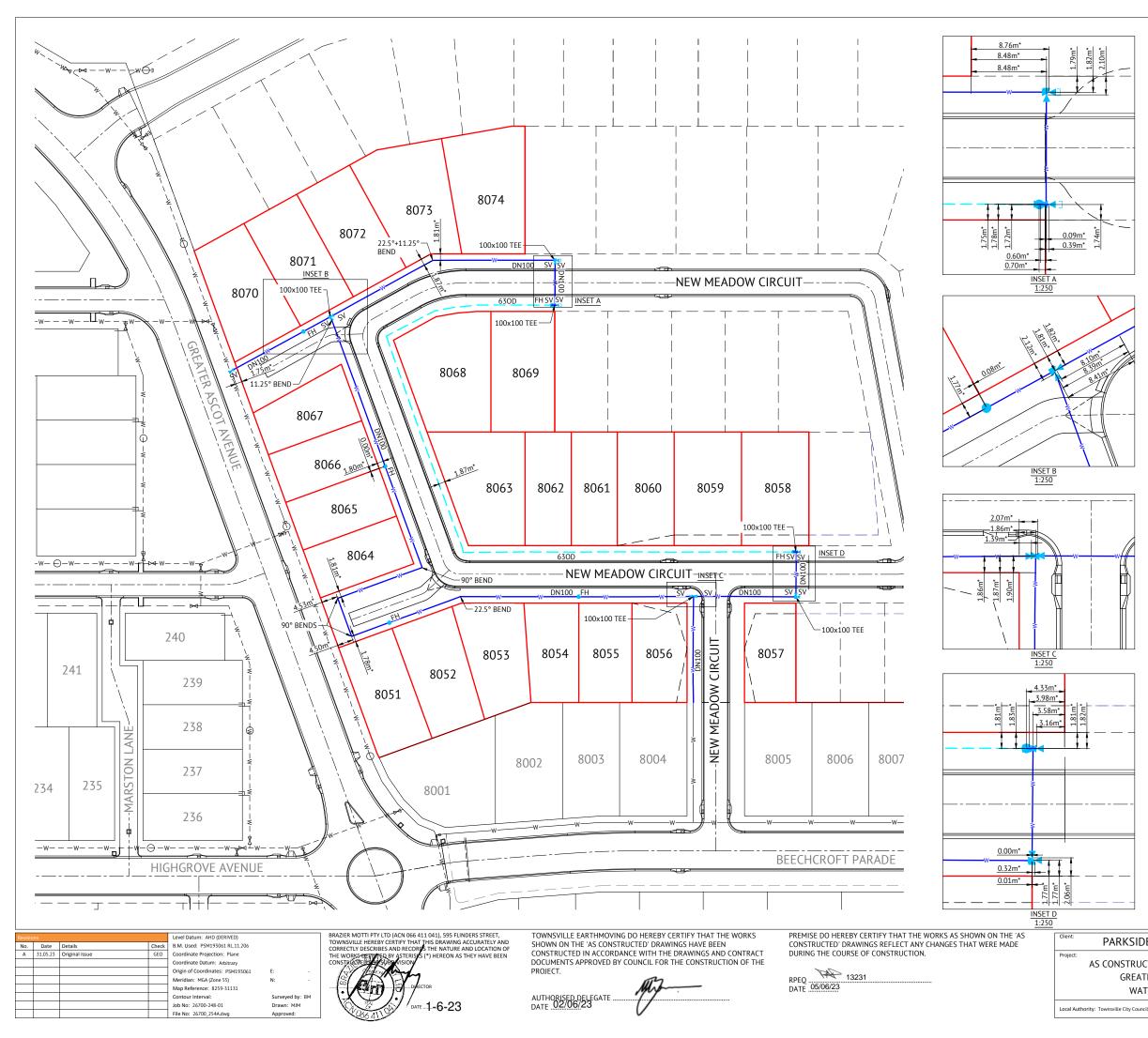
Client: Project

31.05.23 Original Issue

STORMWATER NOTES

- 1. ALL WORKS CONSTRUCTED IN ACCORDANCE WITH THE RELEVANT LATEST ISSUE COUNCIL STANDARD DRAWINGS AND SPECIFICATIONS, UNLESS NOTED
- 0THERWISE. 2. STRUCTURE SETOUT FOR ALL PRECAST GRATED KERB INLETS (TYPE 1 & 2) IS TO THE CENTRE OF THE GRATE AND 530mm FROM THE LIP OF KERB.
- ALL RCP DRAINAGE PIPES FLUSH JOINTED WITH EXTERNAL RUBBER BAND, UNLESS NOTED OTHERWISE.
 ALL uPVC DRAINAGE PIPES RUBBER RING JOINTED CONFORMING TO AS1254.
- 5. ALL POLYPROPYLENE DRAINAGE PIPES IN ACCORDANCE WITH AS5065.
- 6. ALL STORMWATER OUTLETS CONFIRMED ON SITE BY THE SUPERINTENDENT PRIOR TO COMMENCEMENT OF BY THE SUPERINTENDENT PRIOR TO CONSTRUCTION. 7. PIPE CLASS: (2) - RCP CLASS 2 (3) - RCP CLASS 3 (4) - RCP CLASS 4 (6) - RCP CLASS 6 (8) - RCP CLASS 6 (8) - RCP CLASS 8 (P) - POLYPROPYLENE (1) - POLYPROPYLENE
- - (U) uPVC (RCBC) BOX CULVERT

PARKSIDE DEVELOPMENT PTY LTD


AS CONSTRUCTED - GREATER ASCOT STAGE 803 GREATER ASCOT AVENUE - SHAW Q2 STORMWATER LONGITUDINAL SECTION SHEET 2 OF 2

0		SĆA	ALE 1::	100 (A1)	011	1
	Date: 3	1st Ma	y, 2023				e
	Sheet	1	of	1	Sheet	s	18
	Scale:	AS SHO	WN			A1	
	Plan	No:	2	6700)/253	A	g
br	azierm	otti.cor	n.au				Ň
	JRVEYI				72		
	O W N P L						
	OJECT APPINO		GEMENT				

SCALE 1:20 (A1)

SCALE 1:50 (A1)

SCALE 1:1000 (A1)

WATER LEGEND

WATER MAIN AND DIAMETER

POLYETHYLENE WATER MAIN AND DIAMETER

FIRE HYDRANT, VALVE AND REDUCER

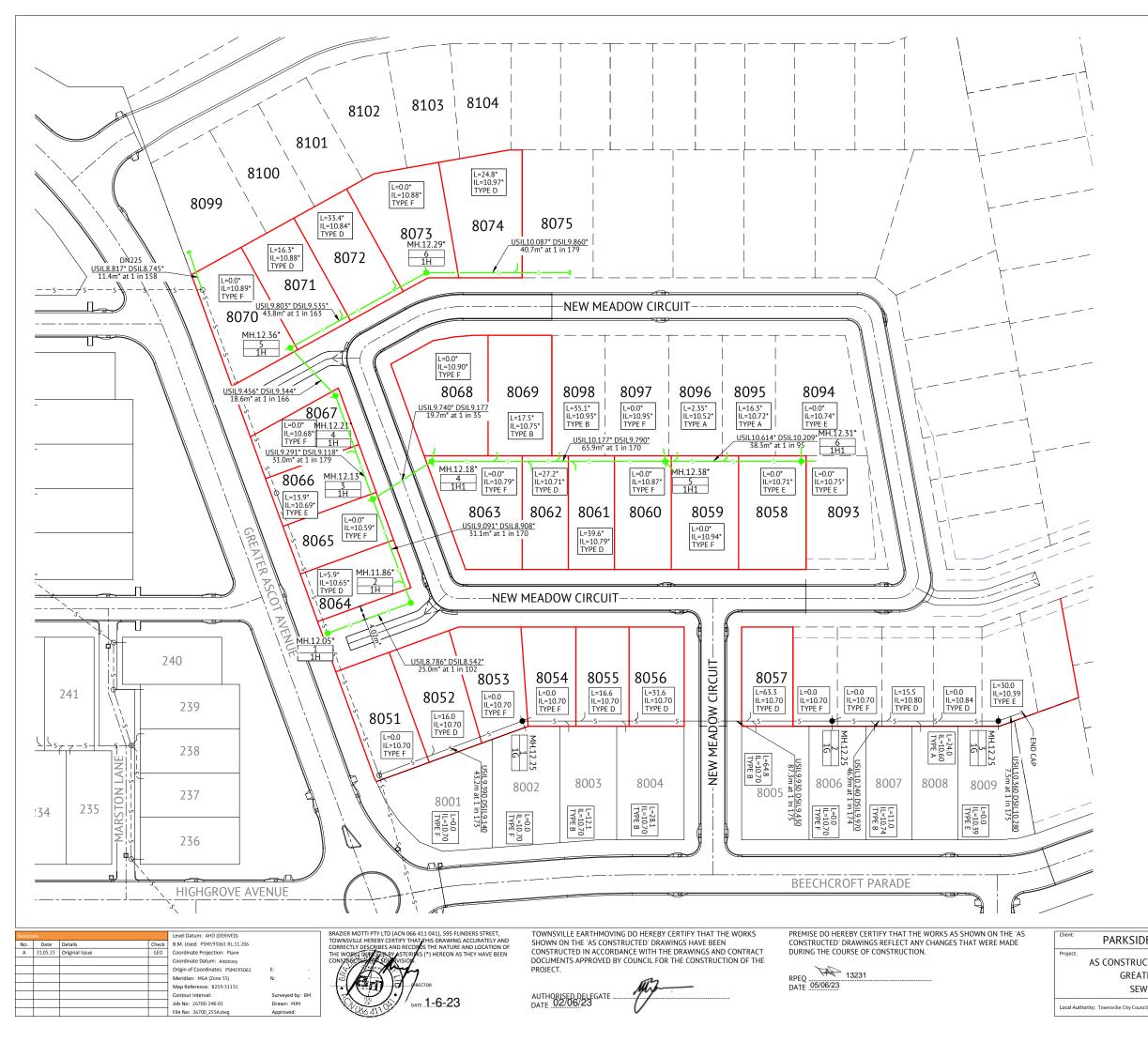
IRRIGATION CONDUITS LEGEND

DN100 CONDUIT

DN150 CONDUIT

WATER NOTES

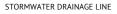
- 1. ALL WORKS CONSTRUCTED IN ACCORDANCE WITH RELEVANT LATEST ISSUE COUNCIL STANDARD DRAWINGS AND PROJECT SPECIFICATION.
- ALL WATER MAINS ARE LOCATED ON A 1.8m ±0.1m ALIGNMENT OFFSET FROM PROPERTY BOUNDARIES, UNLESS NOTED OTHERWISE.
- 3. ALL FIRE HYDRANTS LOCATED PERPENDICULAR TO PROPERTY BOUNDARY ±0.1m UNLESS NOTED OTHERWISE.
- ALL UPVC MAINS ARE CLASS PN16 SERIES 2 COMPATIBLE TO AS 1477 RUBBER RING JOINTED, WITH SOCKETED DICL FITTINGS UNLESS NOTED OTHERWISE. 5. ALL 630D MAINS POLYETHYLENE CLASS PN16 TO AS 4130.
- 6. ALL TRENCHES UNDER ROAD PAVEMENT BACKFILLED WITH CRUSHER DUST TO SUBGRADE LEVEL.
- 7. REFER TCC STANDARD DRAWING SD-315 FOR PVC TO PE SERVICE MAIN CONNECTION DETAIL.
- CONNECTION DETAIL
 CONNECTION TO EXISTING WATER MAINS CARRIED OUT BY COUNCIL AT THE CONTRACTORS EXPENSE.
 VALVE SURFACE BOX TO FERRULE TAP. FINISHED FLUSH WITH
- CONCRETE PATH. REFER TO TCC STANDARD DRAWING SD-350 FOR VALVE SURFACE BOX DETAILS


	_	
_	_	
	-	
	_	
	_	
	_	
	_	
	-	
	_	
	-	
	_	
	-	
	_	
	_	
	_	

0	10	20
	SCALE 1	:500 (A1)

PARKSIDE DEVELOPMENT PTY LTD

AS CONSTRUCTED - GREATER ASCOT STAGE 803 **GREATER ASCOT AVENUE - SHAW** WATER RETICULATION PLAN


SEWER LEGEND

SEWER MAIN AND MANHOLE (MH)

SEWER MAIN AND MAINTENANCE SHAFT (MS)

DN100 SEWER HOUSE DRAIN

CERTIFIED TYPE & INDICATIVE TOP OF MANHOLE LEVEL MANHOLE NUMBER LINE NUMBER

HOUSE CONNECTION (X&Y DIMENSIONS AS PER RELEVANT COUNCIL STANDARD DRAWING U.N.O.)

CERTIFIED DISTANCE FROM DOWNSTREAM MANHOLE CERTIFIED INVERT LEVEL OF HOUSE CONNECTION POINT HOUSE CONNECTION TYPE TYPE A - ACROSS BOUNDARY 'SLOPE DROP' TYPE B - ACROSS BOUNDARY 'JUMP UP TYPE C - WITHIN LOT 'DIRECT CONNECTION' TYPE D - WITHIN LOT 'JUMP UP' TYPE E - MANHOLE 'DIRECT CONNECTION' TYPE F - MANHOLE 'INTERNAL DROP' TYPE G - MAINTENANCE SHAFT CONNECTION TYPE Ex. - EXISTING HOUSE CONNECTION

SEWER NOTES

- 1. ALL WORKS CONSTRUCTED IN ACCORDANCE WITH RELEVANT LATEST ISSUE COUNCIL STANDARD DRAWINGS AND PROJECT SPECIFICATION
- ALL SEWERAGE MAINS LOCATED ON 1.5m ±0.1m ALIGNMENT OFFSET FROM THE PROPERTY BOUNDARIES, UNLESS NOTED OTHERWISE.
- ALL SEWERAGE MAINS DN150, UNLESS NOTED OTHERWISE.
 ALL DN150 AND DN225 SEWERAGE MAINS uPVC DWV SN8, UNLESS NOTED
- OTHERWISE. 5. ALL DN100 HOUSE DRAINS uPVC DWV SN10, UNLESS NOTED OTHERWISE.
- (MAXIMUM LENGTH 10.0m) 6. ALL TRENCHES UNDER ROAD PAVEMENT BACKFILLED WITH CRUSHER DUST TO SUBGRADE LEVEL
- 7 CONNECTION/AI TERATIONS TO EXISTING SEWERAGE INFRASTRUCTURE CARRIED OUT BY COUNCIL AT THE CONTRACTORS EXPENSE
- 8. ALL MANHOLE INTERNAL DROP 'CORES' ARE NOT LOCATED WITHIN 150mm OF PRECAST WALL JOINTS.
- 9. TOP OF MANHOLE LEVELS PROVIDED ARE INDICATIVE. REFER TCC STANDARD DRAWING SD-475 FOR FINISHED LEVELS OF MANHOLE COVERS.

PARKSIDE DEVELOPMENT PTY LTD

AS CONSTRUCTED - GREATER ASCOT STAGE 803 **GREATER ASCOT AVENUE - SHAW** SEWER RETICULATION PLAN

